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Abstract. Fourier-type integrals often balk at numerical evaluation with simple quadrature
algorithms. A suitable strategy to cope with slowly decaying oscillating integrands over unbounded
integration intervals is to subdivide the interval and extrapolate the sequence of partial sums. This
paper, supported by numerical examples, presents guidelines for the choice of the partition points.
It will be shown that the first subdivision point must be selected with particular care in order
to obtain reliable extrapolation results. As a practical example, we explore the propagation of
an electromagnetic wavefront in a dispersive, evanescent medium, which should—despite recent
speculations on superluminal signal transmission—travel with exactly the speed of light. It appears
that the partition extrapolation strategy correctly computes the behaviour of the wave, whereas other
methods fail to give satisfying answers. What is particularly appealing about the proposed method
is that it requires only moderate analysis of the integrand and can be composed from standard
numerical algorithms.

1. Introduction

Many problems in computational physics require the evaluation of Fourier transforms of the
type

∫∞
−∞ g(ω) exp(iω) dω. If appropriate, such integrals are often split atω = 0, so that the

exponential functions of the two parts can be combined to a sine or cosine function. In fact,
standard Fourier integrals are a special case of a much wider class of semi-infinite integrals
with oscillatory integrands. In a fairly general form, such integrals can be written as

I =
∫ ∞
a

g(x)eip(x) dx (1)

where the complex exponential function may, of course, equally well be replaced by its real or
imaginary part. In ordinary Fourier integrals,g(x) is a comparatively smooth spectral density
function and the phase functionp(x) is linear. This is, however, only a special case. When
we consider wave propagation phenomena, for example, we encounter phase functions of the
type

p(ω) = k(ω)z− ωt (2)

which may be anything but linear. Herek(ω) denotes the dispersion relation in the medium, i.e.
the relation of wavenumber and the angular frequency. The integration variable isω, whereas
t andz are the time and spatial coordinates. In non-dispersive media, which are characterized
by a constant phase velocity,k(ω) remains linear. If the medium is dispersive, however, such
that the phase velocity depends upon the frequency, the dispersion relation is nonlinear.
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In most practical cases, it is impossible to find analytical solutions to integrals of the form
(1). Therefore, one must resort to numerical techniques. Unfortunately, the oscillatory nature
of the integrand prevents a straightforward and unthinking application of standard quadrature
schemes.

The problem is alleviated if the functiong(x) decays fast enough (i.e. exponentially) to
justify a truncation of the integration interval. Many methods have been devised to tackle the
quadrature of oscillating functions over finite intervals. They mostly rely on transformation
techniques [1] or approximation of the integrand with simple functions [2–4]. To achieve
the desired accuracy of the result, they frequently also employ adaptive subdivision strategies
[2,4,5].

When the decay of the integrand is too slow to permit truncation, a suitable strategy is to
subdivide the interval and compute a series of partial integrals that are alternating in sign,

Ii =
∫ xi+1

xi

f (x) dx I =
∞∑
i=0

Ii (3)

with x0 = a. The choice of the subdivision points is essentially a matter of taste. For the sake
of convenience and provided we have a real-valued integrand, most authors choose the zeros
of the integrand. From the partial integrals, we can form a sequence of partial sums,

Si =
i∑

j=0

Ij (4)

which then oscillates about the exact value of the integral. Since this sequence usually
converges only slowly, its limit can be determined numerically by extrapolation. Quite a
number of such partition extrapolation methods [6] have been developed. Unfortunately, most
of them are restricted to cases where the integrand has equidistant zeros at least forx →∞,
which is tantamount to an asymptotically linear phase functionp(x). Lyness [7] considered
integrals of the type

∫∞
a
f (x)dx with f (x) slowly decaying and oscillating. The zeros are

required to be asymptotically equidistant as inf (x) = g(x)j (x), wherej (x) is a circular or
Bessel function andg(x) is positive over the entire integration interval. The resulting series is
then accelerated with the Euler transformation, which is very efficient as long as the sequence
{Ii} is alternating in sign. This idea was later used by Lyness and Hines [8] as the basis
of a quadrature routine, and it was further extended by Espelid and Overholt [9]. Finally,
the QUADPACK package [10] comprises several widely used quadrature routines tailored to
Fourier transforms. Therefore, the integrands must have the formg(x) sinωx or g(x) cosωx.
Integration is carried out between the zeros of the oscillating factor using a Clenshaw–Curtis
scheme with adaptive subdivision, so that there is practically no restriction with respect to the
functiong(x). The sequence of partial sums is accelerated with theε-algorithm [11].

It is surprising to see that all computer routines available in standard software libraries are
only capable of integrating functions with an ultimately constant period. There are, however,
also cases where the integrand has increasingly rapid oscillations forx →∞. Electron-wave
dispersion is an example for such a behaviour. Sidi [12] was one of the few who addressed this
problem. He also used subdivision at the zeros of the integrand and developed an algorithm, the
W -transformation, that can accelerate the convergence of the sequence of partial sums. More
importantly, he proved that there is no need to determine the zeros of the integrand exactly,
which can be a computationally expensive procedure. Instead, it is sufficient to regard the
polynomial part of the phase function to create an asymptotic partition, which will eventually
also produce an alternating series. However, this algorithm has not found its way into common
collections of computer programs.
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2. How to partition the interval

The strategy of partitioning the integration interval and using convergence acceleration to find
the limit of the sequence of partial sums is so intuitive that we can readily apply it even without
having specialized computer routines at hand. Taking successive zeros as subdivision points,
we obtain handy pieces that can be treated with any quadrature scheme suitable for smooth
integrands. Instead of the zeros, we can also use the extrema to break up the integration
range. Which points we choose is actually of very little significance [8, 9]. What matters is
that the resulting sequence{Ii} is alternating. We can even go one step further and calculate
the partition points only asymptotically [12]. If the phase functionp(x) has an asymptotic
expansion

p(x) ∼ xγ
∞∑
i=0

ai

xi
(5)

we can extract its polynomial part,

p̄(x) =
γ∑
i=0

aix
γ−i . (6)

The idea behind this is that for very largex, p(x) behaves likep̄(x). In the limit x → ∞,
both functions are identical. Consequently, the zeros of sinp(x) approach those of sin̄p(x),
and in either case the sequence of partial integrals (3) is at least ultimately alternating. The
sequence of partial sums (4) is then treated with any extrapolation algorithm that can handle
alternating sequences. The benefit of an asymptotic partition is that the computation of the
partition points is reduced to the simpler problem of solving a polynomial equation. This can
significantly improve the performance of the entire computation.

The most crucial part of the partitioning strategy is the choice of the sequence member
SI up to which the summation is carried out explicitly and where the extrapolation process is
started. In most cases and for the sake of simplicity, this will be the first subdivision pointx1.
To underline the importance of a proper choice, we shall examine a simple example. Consider
the integral ∫ ∞

0

1

x + 1
sin
(
x + 4

√
(x − 25)2 + 1

)
dx. (7)

Figure 1 shows the phase function together with all solutions of the equationp(x) = nπ , which
mark the zeros of the integrand. If we subdivide the integration range at these points and set
up the sequence of partial sums, we obtain the result shown in figure 2. The pronounced step
in the sequence stems, of course, from the minimum ofp(x) atx = 25. In the vicinity of this
point, the distance between the zeros increases, and the respective partial integral makes an
excessive contribution to the sequence of partial sums. The fact that a region wherep′(x) = 0
dominates the value of the integral is, in a way, nothing but a manifestation of the well known
method of stationary phase. Consequently, to compute the correct limit of the sequence, we
must ensure that we start the extrapolationbeyondthe extremum ofp(x).

To avoid these obvious problems, Sidi suggested selectingx1 as the first zero of sin̄p(x)
greater than the lower integration limita. Thusx1 satisfies the polynomial equationp̄(x) = nπ
for some integern. The subsequent partition pointsxi , i > 1, are then determined to be the
largest positive solution of̄p(x) = (n + i − 1)π or p̄(x) = (n − i + 1)π , depending on
whetherp(x) is increasing or decreasing. While the selection ofx1 works well for many
problems, it would fail in our particular case because the polynomial part of the phase function
is p̄(x) = 5x − 100, which is the right asymptote of the hyperbola. Sincep̄(x) is a linear
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Figure 1. Phase functionsp(x) = x+4
√
(x − 25)2 + 1 (——) andp(x) = 6x−5

√
(x − 10)2 + 1+

50 (- - - -) together with partition points.

Figure 2. Sequence of partial sums for (7) based on the partition points shown in figure 1.

function, we would obtain a comparable set of partition points as the one given in figure 1 with
x1 ≈ 0. Hence we would probably not detect the existence of the extremum and would get a
completely wrong extrapolation result.

The simplest way out of this dilemma is to hinge the partition points on the original phase
functionp(x). With the same algorithm as before, we findx1 ≈ 40 and run no risk. The only
deficiency is that the interval [x0, x1] for the first integral becomes unnecessarily large, which
will affect the computing time. Yet another potential problem is lurking in Sidi’s approach, as
the next example will demonstrate. If we changep(x) in (7) only slightly,∫ ∞

0

1

x + 1
sin
(
6x − 5

√
(x − 10)2 + 1 + 50

)
dx (8)

we get a phase function that has no extremum, but a change of its slope atx = 10, as figure 1
shows. Partitioning the integrand at its zeros, we obtain the sequence of partial sums depicted
in figure 3. Despite the absence of extrema inp(x), there is a discontinuity in the sequence.
Like before, the sequence seems to converge on either side. Hence any extrapolation algorithm
will find a computationally reliable limit when being fed with the first or the last few sequence
members. As the figure also shows, these limits are different, and the only way to pick the
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Figure 3. Sequence of partial sums for the integral (8) based on the subdivision shown in figure 1.

right one is to start the extrapolation late enough.
Needless to emphasize that the aforementioned problems are not restricted to hyperbolic

phase functions. They apply equally well to polynomial phase functions or any other nonlinear
function with extrema or sharp bends. Based on the examples and considerations given, we
suggest the following heuristic algorithm for the partitioning of the integration interval:

• Determine all solutions ofp′(x) = 0. If they can be found analytically, only the real part
is of interest. Then take the maximum of this set,

xm = max{Rexi}|p′(xi) = 0. (9)

This ensures that the first partition point is greater than any extremum or saddle point
of the phase function. Ifp′(x) = 0 has no solution, the condition for inflexion points,
p′′(x) = 0, must be taken instead. For polynomialp(x), these two criteria are already
sufficient. If the phase function is more general (e.g. hyperbolic), inflexion points may
not exist either. Then it is reasonable to look for extrema in the second derivative, i.e.
p′′′(x) = 0, which mark persistent changes of the slope ofp(x).
• Let x1 be the first zero of sinp(x) greater thanxm and the lower integration limita. Then
x1 is a solution ofp(x1) = nπ for some integern.
• The subsequent partition points{xi}, i > 1 are then found by solving the equation

p(x) = (n + i − 1)π for lim
x→∞p(x) = ∞

p(x) = (n− i + 1)π for lim
x→∞p(x) = −∞.

(10)

If the equation has more than one solution for a giveni, the largest solution shall be taken.

The algorithm for calculating the subdivision points given above is based on the original
phase function. We can, however, apply it to the polynomial approximationp̄(x) of the phase
function as well, which yields an asymptotic partition. In this case, the determination ofxm
would be easier. However, to select the first subdivision point, it is still imperative to analyse
p(x) itself, since the approximation might be too coarse (as in our earlier example). The
calculation of the further subdivision points can then safely be carried out withp̄(x).

So far, we have only considered the behaviour of the integrand’s oscillating factor. Another
source of troubles that may lead the extrapolation algorithm astray is the non-oscillating factor
g(x) in (1), which should vary only slowly compared with the oscillations. In particular,
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changes of the sign ofg(x) can be harmful if they occur abruptly. The smootherg(x) is, the
less pronounced is this effect. So, in order to select the first partition point properly, we must
apply the same considerations tog(x) as top(x).

3. Thoughts on efficient computation of the integrals

The selection of an appropriate partition is a prerequisite for a reliable extrapolation result. It
exerts only a minor influence on the computational performance of the overall algorithm. The
way we compute the individual integrals is much more relevant in this respect. We should
thus take a closer look at possible quadrature methods. The integralsIi =

∫ xi+1

xi
f (x)dx to

the right of the first partition pointx1 are computed between successive zeros and therefore
have smooth integrands with roughly the shape of half a sine wave. The computation of these
partial integrals is thus no problem, and nearly any quadrature algorithm will yield satisfying
results. A scheme that is particularly suited to such well-behaved integrands is the Gauss rule.
It has the additional benefit that it is available in many shades and in many program libraries.

While the partial integralsIi for i > 1 look fairly similar for all possible integrands, the
integration range of the first integralI0 =

∫ x1

a
f (x)dx may comprise more than just two zeros

of the integrand. In fact, the integrand can be either smooth or strongly oscillating, which
might depend also on additional parameters. In wave propagation problems, the choice of
z and t in (2) can change the behaviour of the integrand completely. In principle, the most
appropriate quadrature algorithm for the first integral could be selected based on ana priori
investigation of the integrand. This is, however, a viable strategy for a single evaluation of an
individual integrand and is not really appropriate for parameter-dependent integrals. It is thus
preferable to seek a robust method able to cope with a large variety of functions, in particular
with oscillatory ones. Such methods often transform the integrand prior to quadrature. One
example is the double-exponential rule, which has been quite successful in numerical tests.

A performance comparison of several quadrature methods for a particular example will be
given in the next section. As far as the extrapolation is concerned, any algorithm suitable for a
convergence acceleration of alternating series can be applied. A good choice is, for example,
the ε-algorithm [11]. Being a general-purpose algorithm, it has fair acceleration properties
and can be found in many implementations.

4. A practical example: the propagation of a wavefront

Let us now apply the results of the previous sections to a real physical example. There has been
a fierce controversy in the past few years about experiments that seemed to prove superluminal
signal transmission. Enders and Nimtz [13] studied the propagation of evanescent modes in
a hollow waveguide and found that the maximum of a Gaussian pulse traverses this ‘tunnel’
in almost no time. Their conclusion was that signal transmission faster than light is possible,
which sparked a still ongoing debate [14,15]. Gaussian pulses are very popular in theory, the
only problem with this concept is that they have an infinite duration and are thus inappropriate
for the transmission of information. It seems therefore reasonable to study the behaviour of a
pulse with rectangular envelope, which is the prototype building block of all digital signals.

As a medium we choose a lossless electron plasma. We then have the same dispersion
relation as with a hollow waveguide, but we can restrict our analysis to TEM waves. This
makes life a little bit easier since we have to take care of only one spatial component. A
practical example for this one-dimensional model is an electromagnetic transmission line with
an appropriate dispersive dielectric. If we consider this line as infinitely long or properly
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terminated, we can even neglect reflections. The wave at any point along the line can be
described by a superposition of monochromatic plane waves,

u(x, t) =
∫ ∞
−∞

U0(ω)e
i(ωt−k(ω)x) dω (11)

which is in fact a Fourier integral withU0(ω) being the spectrum of the pulse atx = 0. The
dispersion relation of the medium is given by

k(ω) = 1

c

√
ω2 − ωp2 (12)

with the velocity of lightc and the plasma frequencyωp. Below this cutoff frequency, the
wavenumberk(ω) becomes imaginary, and we have evanescence, which prohibits normal
wave propagation and yields exponential attenuation with total, non-dissipative reflection of
the signal’s energy. To examine this behaviour, we set the excitation atx = 0 to be a carrier
below cutoff (ω0 < ωp) being switched on att = 0 and off att = τ ,

u(0, t) =
{

cos(ω0t) if 0 6 t 6 τ
0 otherwise

(13)

which means that we have steps in the signal. Since the medium is causal, we expect these
wavefronts to travel through the plasma at exactly the speed of light [16]. The spectrum of the
initial pulse is found to be

U0(ω) = 1

2π

∫ τ

0
cos(ω0t)e

−iωt dt

= 1

2π

[
sin τ

2(ω − ω0)

ω − ω0
e−i(ω−ω0)

τ
2 +

sin τ
2(ω + ω0)

ω + ω0
e−i(ω+ω0)

τ
2

]
. (14)

When we now assemble (11) to determine the evolution of the wave, we must be careful with
the expression of the dispersion relation in the individual frequency ranges. Only if we set

k(ω) =


−1

c

√
ω2 − ωp2 if ω 6 −ωp

− i

c

√
ω2 − ωp2 if |ω| 6 ωp

1

c

√
ω2 − ωp2 if ω > ωp

(15)

do we obtain correct results, i.e. a real-valued system response and attenuation for the
evanescent modes with increasingx. Without loss of generality, we also setτω0 = 2nπ ,
so that the input signal lasts exactly for an integer multiplen of periods, which allows for
a convenient simplification of the Fourier integral. Taking everything together, we obtain
for (11)

u(x, t) = 2

π

∫ ωp

0

ω

ω2 − ω0
2
e−

x
c

√
ωp2−ω2

sin(nπω/ω0) cos(ωt − nπω/ω0) dω

+
2

π

∫ ∞
ωp

ω

ω2 − ω0
2

sin(nπω/ω0) cos

(
ωt − x

c

√
ω2 − ωp2 − nπω/ω0

)
dω

(16)

where we have split the frequency range in the evanescent part and the pass band. To prepare
the integrals for numerical treatment, it is advisable to introduce normalized variables. We set
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Table 1. Computing times in seconds needed for the evaluation of (17) at 1051 points with different
quadrature algorithms on a PC with a 300 MHz Pentium II processor. Theε-algorithm was used
for extrapolation.

Gauss–Kronrod Double exponential Subintervals

Finite part of (17) 293 113 1
Infinite integral in (17)

truncation 5670 2035 1
extrapolation of (17) 829 2283 120
extrapolation of (18) 598 2084 28

ξ = ω/ωp for the integration variable,� = ω0/ωp for the carrier frequency, andX = ωpx/c
andT = ωpt for the space and time coordinates, respectively. Then the Fourier integral reads

u(X, T ) = 2

π

∫ 1

0

ξ

ξ2 −�2
e−X
√

1−ξ2
sin(nπξ/�) cos(ξT − nπξ/�) dξ

+
2

π

∫ ∞
1

ξ

ξ2 −�2
sin(nπξ/�) cos(ξT −X

√
ξ2 − 1− nπξ/�) dξ. (17)

The first integral is finite and can be computed directly. For the numerical results given below,
we tried several algorithms. The performance results are given in table 1. As could have been
expected, the double-exponential rule needs the least computing time. The evaluation of the
second integral, however, is much more interesting. Note that the spectrum converges only
like 1/ξ . Since the integrand is a product of two oscillating functions, it is sound to rewrite
the integral as

u2(X, T ) = 1

π

∫ ∞
1

ξ

ξ2 −�2
sin(ξT −X

√
ξ2 − 1) dξ

+
1

π

∫ ∞
1

ξ

ξ2 −�2
sin(ξT −X

√
ξ2 − 1− 2nπξ/�) dξ. (18)

The integrals now have the structure given in (1) withp(ξ) = ξT − X
√
ξ2 − 1 and

p(ξ) = ξT − X
√
ξ2 − 1 − 2nπξ/�, which actually describes hyperbolas. For largeξ ,

the oscillations have a nearly constant period, although the frequency strongly depends on the
parametersX andT . Therefore, we could also use equidistant subdivision points, rather than
calculating the zeros explicitly. The choice of the first subdivision point is uncritical except
for the case when in the first integral,X is slightly smaller thanT . The same applies for
the second integral whenX is slightly smaller thanT − 2nπ/�. Under these circumstances,
distinct minima appear inp(ξ) that must be considered. We thus have the same situation as
in section 2 and must be wary of steps in the sequence of partial sums. Particular care is also
required whenX = T , because then the first integral in (18) is no longer ultimately oscillating,
and an extrapolation method is not applicable. In this special case, a different treatment is
needed, as for instance the application of the double-exponential rule.

To examine the propagation of the signal, we compute the turn-on of the wave atX = 10
for the parameters� = 0.2 andn = 2. To achieve a sufficient resolution, we evaluate the
integrals at 1051 points in the interval [9.5, 11.6]. The results are shown in figure 4. We
see that the wavefront indeed arrives atT = X, which in our normalized variables means
a propagation velocity equal to the speed of light. The high-pass filter characteristic of the
plasma has turned the wavefront into a sharp needle, but its height remains undistorted due to
the absence of losses. Before the arrival of the pulse, the medium is completely at rest, which
is also correctly reflected in the numerical results.
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Figure 4. Numerical results of (17) for� = 0.2, n = 2, andX = 10 obtained with the partition
extrapolation approach applied to (18).

Figure 5. Numerical results of (17) for� = 0.2,n = 2, andX = 10 obtained with a QUADPACK-
like partition extrapolation strategy.

For comparison, we also compute (17) using two other strategies. For the first one we do
not split the second integral in (17) but integrate between the zeros of the factor sin(nπξ/�)

instead. The resulting sequence of partial sums is then extrapolated as usual. This is the basic
idea of the QUADPACK algorithms [10]. For our experiment, however, we use the same
partition extrapolation implementation as above with a different integrand and phase function.
The outcome of the computation is shown in figure 5. We see that the result is particularly
bad around the wavefront. A glance at (18) reveals the reason. WhenX is about equal to
T , we no longer have a high-frequency oscillation modulated by a low-frequency one, as
(17) would suggest. Rather, the integrand is composed from a superposition of a high- and a
very low-frequency oscillation. Consequently, the sequence of partial sums does not oscillate
symmetrically about its limit, which makes it unsuitable for extrapolation. AsX andT grow
more different, the integrand shows a more ‘wavepacket’-like behaviour, and extrapolation
becomes easier and more reliable. Hence, this strategy is applicable only for parts of the wave
away from the wavefront.
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Figure 6. Numerical results of (17) for� = 0.2, n = 2, andX = 10 obtained with direct
computation and truncation of the integration interval atξ = 100.

The second alternative we investigate is the conventional truncation method. Here we also
compute the original integral (17) directly. To minimize the error, we truncate the integration
range at a zero of sin(nπξ/�). Unfortunately, as figure 6 shows, this does not help. Just
around the wavefront, the values are completely wrong. Obviously the truncation atξ = 100
is still far too coarse for the slowly decaying integrand. What makes the situation particularly
evil is the ‘smooth’ look of the signal. While we would surely suspect numerical problems
in figure 5 (provided we chose a sufficiently fine resolution), we could be led to accept the
outcome in figure 6 because of its appearance. In this case, we would have to interpret the
oscillations ahead of the wavefront as superluminal precursors, although they are actually a
numerical artifact. From a different viewpoint, truncating the integration interval comes down
to limiting the spectrum of the signal, and what we get is nothing but the well known Gibb’s
phenomenon.

Table 1 gives a performance summary of the numerical algorithms implemented in
Mathematica [17]. The computations were carried out on a Pentium II processor, and a
series of trials on a Sun workstation yielded comparable results. The absolute figures are not
so important, it is their relations that reveal several remarkable properties. First of all, we note
that for single integrals comprising a large number of zeros of the integrand, an algorithm that
transforms the integrand prior to quadrature (such as the double-exponential rule) is superior
to a simple Gauss scheme. The latter is, on the other hand, unbeatable if we integrate between
successive zeros. Hence the results confirm the suggestions of the previous section. We also
see that the QUADPACK-like extrapolation approach is only slightly slower than the ‘proper’
extrapolation strategy due to the larger number of subintervals (i.e. members of the sequence of
partial sums). Had we taken the same number as with the split integrand in (18), we would have
been considerably faster, which is not surprising as there would have been only one integral to
compute and not two. Alas, this brings no advantage, since the result is unacceptable anyway,
and it does not improve even if we take more sequence members into account. The last lesson
we learn from table 1 is the also not astonishing fact that the truncation approach is bedevilled
by extremely long computing times. The only chance to ameliorate the results of figure 6 is to
carry the integration further thanξ = 100. This in turn would linearly increase the computing
time. Obviously, the truncation strategy is completely inappropriate for our example.
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5. Conclusions

The numerical computation of semi-infinite Fourier-type integrals often poses problems if
the integrand is slowly decaying, so that a simple truncation of the integration interval is
impossible without introducing significant errors. For such cases, it is advisable to partition
the integration interval and determine the limit of the sequence of partial sums by means of
extrapolation. Although this is essentially a straightforward method, the subdivision points
must be chosen with care. Fortunately, this requires only a simple analysis of the oscillating
factor. We presented criteria for the partition strategy and the evaluation of the partial integrals.

As a practical example, we considered a wave propagation problem, namely the motion of
a TEM shock wave in a lossless plasma. The associated Fourier integrals are both nonlinearly
oscillating and slowly decaying, which calls for a partition extrapolation method. Since this
investigation was stimulated by the recent discussion on superluminal signal transmission, a
proper evaluation of the signal around the wavefront was of eminent importance. By means
of the proposed method, we could verify that the wavefront moves exactly with the speed
of light, which is in accordance with electrodynamic theory. We also found that other, less
appropriate computation methods are unable to give correct results and may even lead to false
interpretations.

As an additional benefit, it should be noted that the method presented here does not require
the implementation of new and sophisticated numerical algorithms. The entire numerical work
can be accomplished by standard algorithms to be taken from standard software libraries. So
all that is actually needed is a reasonable combination of readily available building blocks.
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